INDICATIONS FOR BLOOD AND MARROW TRANSPLANTATION IN NORTH AMERICA 2003

High dose therapy in MM

1 - HDT versus CC ?

- 2 Which preparative regimen ?
- 3 Double transplantation ?
- 4 HDT and new drugs?
- **5 Allogeneic transplant ?**

IFM 90 : General outline

IFM 90 : Survival ≤ 60 years

IFM 90 : Survival according to response

CC vs ASCT RANDOMIZED STUDIES

	Nb of pts	Age	сс	HDT	SCT	Maintenance
IFM90 <i>(NEJM 96)</i>	200	<u><</u> 65 Med 57	VMCP/VBAP	HDM14O + TBI 8G	ВМ	IFN
MRC7 <i>(NEJM 03)</i>	401	<u><</u> 65 Med 55	ABCM	HDM200	PBSC	IFN
Italian MMSG (Turin 2004)	195	55-70 Med 62	MP	HDM100x2 + PBSC	PBSC	IFN + Dex
MAG91 (ASH 99)	190	55-65 Med 61	VMCP	HDM140 + Bu 16	PBSC	-
PETHEMA* (ASH 03)	164	<u><</u> 65 Med 56	VBMCP/VBAD*	HDM140 + TBI 12G*	PBSC	IFN + Dex
US INTERGROUP (ASH 2003)	510		VAD/VBMCP	Mel + TBI 12G	PBSC	IFN vs 0

* In patients responding to initial CT

CC VS ASCT:

CR RATE

	CR defin	CC	ASCT	p. Value
IFM90	< 0 EP	5	22	< 0.001
MRC7	< 0 If	8	44	< 0.001
IMMSG	< 0 EP	7	26	<0.0001
PETHEMA	< 0 EP	11	30	0.002
USIG	< 0 If	15	17	NS

CC VS ASCT:

	Med F-up	CC	ASCT	p. Value
IFM90	7 y	18	28	0.01
MRC7	42 m	19	31	< 0.001
IMMSG	3 y	16	28	0.0036
MAG91	8.4 y	19	25	0.05
PETHEMA	44 m	34	42	NS
USIG	-	21	25	0.05

CC versus HDT: Overall Survival

	HD regimen	CC	HDT	p. Value
IFM90	Mel+TBI 8Gy	44	57	0.03
MRC7	Mel	42	54	< 0.001
IMMSG	Mel	43	58+	0.0008
MAG91	Mel+BU	45	42	NS
PETHEMA	Mel+TBI 12Gy	67	65	NS
USIG	Mel +TBI 12Gy	53	58	NS

Mel Without TBI should be the preparative regimen!!!

IFM 99-06 Newly diagnosed MM 65-75 years

PROGRESSION-FREE SURVIVAL ACCORDING TO TREATMENT

OVERALL SURVIVAL ACCORDING TO TREATMENT

Autologous SCT: Current status in young and elderly patients

• <u>In young patients (< 65 years), ASCT:</u>

o Is the Standard of care
o Survival benefit is related to CR achievement
o TBI (12G) or BU 16 should be avoid

• In elderly patients (> 65 years), ASCT:

o Is not recommended

High dose therapy in MM

- 1 HDT versus CC ?
- 2 Which preparative regimen ?
- 3 Double transplantation ?
- 4 HDT and new drugs?
- **5 Allogeneic transplant ?**

IFM 95 : Design

VAD x 3

Stem cell collection

Randomisation

ARM A = MEL-140 + TBI + PBSC

ARM B = MEL-200 + PBSC

IFM 95 : T.R. Toxicity

	Arm A	Arm B	p.
ANC < 500	10 d	8 d	<0.001
Plat < 25 000	7 d	5 d	<0.001
Nb of plat T.S.	2	1	0.001
Grade 3/4 toxicities (%) - mucositis - cardiac - pulmonary - renal	51 4 6 4	30 1 1 2	0.01
T.R.M. (%)	4	0	0.07

IFM 95 : SURVIVAL

IFM 95 : CONCLUSIONS

1 - Mel-200 improves T.R. toxicities.

2 - Mel-200 improves OS but not EFS (better survival after relapse)

C Mel-200 is the recommended preparative regimen !

High dose therapy in MM

- 1 HDT versus CC ?
- 2 Which preparative regimen ?
- 3 Double transplantation ?
- 4 HDT and new drugs?
- **5 Allogeneic transplant ?**

IFM 94 : General outline

VAD 1 VAD 2 VAD 3

Autologous Stem Cell Collection

HDM (140) + TBI Autologous Graft HDM (140) Autologous Graft

HDM (140) + TBI Autologous Graft

IFM 94 : Overall Survival

ALL PATIENTS

OS if response to 1stgraft < 90%

OS if response to 1^{st} graft \geq 90 \%

SINGLE VS DOUBLE ASCT RANDOMIZED STUDIES

	Single	Double	Δ
*IFM 94	HDM140 +TBI	HDM 280 + TBI	HDM 140
*MAG95	Multidrug +TBI	HDM 280 + TBI	1
*Bologna	HDM 200	HDM 320 + BU	HDM 120 + BU
*GMMG	HDM 200	HDM 400	HDM 200
*Hovon	HDM70x2	HDM140+CY+TBI	CY + TBI

SINGLE VS DOUBLE ASCT:

MEDIAN EFS

	Med F-up	Single	Double	p. value
IFM 94	75 m	25	30	0.03
MAG 95	53 m	31	33	NS
Bologna	3 y	21.5	31	0.02
GMMG	26 m	23	NR	0.03
Hovon	56 m	20	22	0.016

SINGLE VS DOUBLE ASCT

MEDIAN OS

	Med F-up	Single	Double	p. value
IFM94	75 m	48	58	0.01
MAG95	53 m	49	73	0.04
Bologna	40 m	56	60	NS / 0.01
GMMG	?	?	?	?
Hovon	56 m	55	50	NS

SINGLE vs DOUBLE ASCT

 Current results are in favor of double ASCT (OS in 3/5 studies, EFS in 4/5 studies)

- Long follow-up is needed before drawing definite conclusions (IFM 94, MAG, Hovon)

-However, 7-year EFS is only 20% in the DT arm Maintenance Therapy: Thal?

High dose therapy in MM

- 1 HDT versus CC ?
- 2 Which preparative regimen ?
- 3 Double transplantation ?
- 4 HDT and new drugs?
- **5 Allogeneic transplant ?**

Optimizing Stem Cell Transplantation (SCT)

• The role of new drugs:

o In the induction regimen

o In the conditioning regimen

o In the maintenance regimen

ASCT: the Induction Regimen.

The goals of the Induction Regimen Rapid reduction of tumor mass: **Dexamethasone based (DEX or VAD) !** • Adequate stem cell collection: No Alkylating agents !

Q : Could New Drugs improve DEX or VAD ?

ASCT and New Drugs: induction

Author	Regimen	Ν	RR	CR/VGPR	р
Cave	VAD	100	52%	14%	0.00
Cavo	Dex-Thal	100	76%	19%	1
Doilyumor	Dex	104	41%		0.00
Rajkumar	Dex-Thal	103	63%		2
Goldschmidt	VAD	200	63%	CR= 3%	0.00
Coluscimiut	TAD	200	80%	CR=7%	1
Harousseau	Dex-Vel	48	67%	31%	
Rajkumar	Dex-Rev	34	91%	38%	

ASCT and New Drugs: Induction

New Drugs + DEX > DEX alone or VAD:

✓ 20 - 38% of CR or VGPR (vs 10%).

✓ Adequate stem cell collection.

Optimizing Stem Cell Transplantation (SCT)

- The role of new drugs:
 - **o** In the induction regimen
 - o In the conditioning regimen
 - o In the maintenance regimen

HDT and New Drugs: the HD Regimen

The Standard HD regimen: ✓ Mel 200mg / m² The addition of Velcade was logical: ✓ Synergistic effects ✓ No shared toxicities

Cell lines and fresh MM cells : synergistic Effect between melphalan and bortezomib

Ma MH Clinic Cancer Res 2003 9:1136–44

V-MP: Response rates (n=53) Analysis of the best response so far achieved

V-MP: TOXICITY according to Cycles (n=60)

	$\mathbf{GRADE} \geq 3$		
	1st-2 cycles	≥3 cycles	
NAUSEA	2%	0%	
VOMITING	2%	0%	
DIARRHEA	8%	2%	
CONSTIPATION	6%	2%	
ANOREXIA	2%	0%	
ASTENIA	4%	2%	
INFECTION	12%	4%	
PN	8%	6%	
THROMBOCYTOPENIA	33%	17%	
NEUTROPENIA	33%	24%	
ANEMIA	8%	2%	

The VEL-MEL Regimen

V= Velcade 1mg / m² MEL= Melphalan 200 mg / m²

The Vel-Mel Regimen: Patients

• N = 25

- Median Age = 56 y (39-67)
- Status of disease:
 - ✓ Response < 50% to VAD = 18
 ✓ Response < 90% to HDM = 7

The VEL-MEL Regimen

- $PN < 500/mm^3 = 7 d (5-10)$
- Plat < 20000/mm³ = 1.5 d (0-7)
- Severe Mucositis = 20%
- Response Rate:
 - ✓ CR = 31% !!
 - ✓ VGPR = 46%
 - ✓ CR + VGPR = 77% !!!!

Optimizing Stem Cell Transplantation (SCT)

- The role of new drugs:
 - **o** In the induction regimen
 - o In the conditioning regimen
 - o In the maintenance regimen

ASCT and New Drugs: Maintenance

- Maintenance after ASCT is a logical issue : Residual Disease .
- The effective Maintenance therapy is unknown:
 - ✓ Chemotherapy failed to demonstrate any benefit.
 - Maintenance interferon showed a modest increase in PFS without any, or with minimal, survival benefit.
 - ✓ Corticosteroid were found to prolong the duration of response, however the impact on survival was controversial.
- Thus, Thalidomide was an attractive candidate:
 - ✓ Oral agent
 - ✓ Active among patients who had failed high dose therapy,
 - ✓ With doses as low as 50 mg,
 - ✓ Without myelosuppressive toxicity.

IFM 99 02 : Study Design

Inclusion: ∆ 13 ; ß2m (0 or 1 Factor)

VAD x 3
Mel-140 + PBSC
Mel 200 + PBSC

Randomization

No maintenance

Pamidronate

Pamidronate + Thal

IFM 99 02: Response Rate ≥ 90%.

	Arm A	Arm B	Arm C	р
After VAD	15%	15%	16%	NS
At Random	45%	47%	50%	NS
After Random	55%	57%	68%	0.03

IFM 99 02 : EFS from Diagnosis

IFM 99 02 : Risk of Bone Events.

IFM 99 02 : Risk of Bone Events

IFM 99 02 : Overall Survival according to Thal (Arm B versus Arm C).

IFM 99 02 : EFS According to Response at Random

Response at Random ≥ 90%

Response at Random < 90%

Thal

54

36

IFM 99 02: Conclusions

• Thalidomide improves:

Response rate, EFS, and OS when given after ASCT.

• This survival benefit:

✓ Was not due to a maintenance effect :

Not observed among patients in CR after ASCT

✓ Was due to the reduction of the residual tumor mass:

Only observed among patients failing to achieve CR after ASCT

• Since thalidomide improves the survival by reducing the tumor mass (rather than by a maintenance effect) :

Stopping thalidomide as soon as a very good partial response has been reached (2 or 3 months) could be an effective strategy in order to reduce the side effects and to avoid thalidomide-resistance at time of relapse.

ASCT and New Drugs: Maintenance / Consolidation

- After ASCT, Thal was demonstrated to be an effective drug.
- However, Neuropathy was a major limiting factor (IFM 99: 68%).
- Revlimid was a logical alternative :
 - **√Oral agent**
 - ✓ Effective at low dose
 - ✓ At least as effective as Thal
 - ✓ Without neurological toxicity
- SWOG, CALGB, IFM 2005 02 protocols.

IFM 2005-02 protocol

ASCT as part of 1st line TT

Randomization

ASCT and New Drugs : Conclusions.

- New drugs will improve:
 - ✓ The induction regimen: 30-40% of CR/VGPR.
 - ✓ The HD regimen: 70-80% of CR/VGPR.
 - ✓ The duration of response (Thal+, Rev?).
- Such a CR rate, efficiently maintained, could be associated with "cure" !!

High dose therapy in MM

- 1 HDT versus CC ?
- 2 Which preparative regimen ?
- 3 Double transplantation ?
- 4 HDT and new drugs?
- **5 Allogeneic transplant ?**

IFM 99 : Factors : \triangle 13 ; β_2 >3mg/L

PBSC collection = IFM 99-01 → Cyclo (4g/m2) + G-CSF → SCF + G-CSF

Intent-to-treat : Survival IFM9903 vs IFM9904

Intent-to-treat : EFS, IFM9903 vs IFM9904

Allogeneic SCT: The role of reduced intensity conditioning

• High and rapid relapse rate in the high risk population.

Thus, 2 different strategies can be proposed:
To limit its indication to low risk patients

No !: 6 year OS >82% after ASCT in the IFM 9902

To further control the residual tumor mass after allogeneic

SCT By using consolidation / maintenance protocols: Dex-Thal, Rev, Vel ?